If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+19x+7=0
a = 9; b = 19; c = +7;
Δ = b2-4ac
Δ = 192-4·9·7
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{109}}{2*9}=\frac{-19-\sqrt{109}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{109}}{2*9}=\frac{-19+\sqrt{109}}{18} $
| 1/9^x=3^-x/3x81^x | | 9y=y-8 | | x-0.5=-0.8 | | 5-7x=13-9x | | -8(8+6)=4(x-6) | | 69+11y=224 | | c+11=19 | | 10+c=21 | | -5x+2-3x=-50 | | -15-7-(-11)=a | | 4x-53x+10=126 | | v/3+v/6=54 | | 7^2^x+12=7^x | | 2y*29=0 | | 9y-59+2y=0 | | 9.8x2.5=24.5 | | 180x13=2340 | | 8f-4=44 | | 8f+10=34 | | 2(x-4)/3-8=32 | | 2x-4+6-8+10=3x | | H=2.5+0.75y | | -2(d+17=64 | | 4(3i+2)-8=5(2i+3)+5 | | H(-3)=3.2x-1 | | -62=-6x-5x+10 | | 2i+4+(3i-4)=3i+12 | | 8x+3*2.4=15.6 | | -10-2x+5x=26 | | 8x+3x2.4=15.6 | | 10i=-5i+60 | | -4x+7x=25 |